Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cell Rep ; 43(3): 113897, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38493478

RESUMO

Chromatin structure is regulated through posttranslational modifications of histone variants that modulate transcription. Although highly homologous, histone variants display unique amino acid sequences associated with specific functions. Abnormal incorporation of histone variants contributes to cancer initiation, therapy resistance, and metastasis. This study reports that, among its biologic functions, histone H3.1 serves as a chromatin redox sensor that is engaged by mitochondrial H2O2. In breast cancer cells, the oxidation of H3.1Cys96 promotes its eviction and replacement by H3.3 in specific promoters. We also report that this process facilitates the opening of silenced chromatin domains and transcriptional activation of epithelial-to-mesenchymal genes associated with cell plasticity. Scavenging nuclear H2O2 or amino acid substitution of H3.1(C96S) suppresses plasticity, restores sensitivity to chemotherapy, and induces remission of metastatic lesions. Hence, it appears that increased levels of H2O2 produced by mitochondria of breast cancer cells directly promote redox-regulated H3.1-dependent chromatin remodeling involved in chemoresistance and metastasis.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Histonas/metabolismo , Cromatina , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Resistência a Múltiplos Medicamentos , Neoplasias da Mama/genética
2.
Acta Physiol (Oxf) ; 240(4): e14123, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459766

RESUMO

AIMS: This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS: Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS: Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS: Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.


Assuntos
Neurônios Adrenérgicos , Locus Cerúleo , Proteína Vermelha Fluorescente , Camundongos , Feminino , Masculino , Animais , Locus Cerúleo/metabolismo , Caracteres Sexuais , Proteômica , Camundongos Transgênicos , Espectrometria de Massas
3.
Blood Adv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537079

RESUMO

Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells (RBCs). Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report that conditioned media from Plasmodium falciparum culture induces oxidative stress in uninfected, catalase-depleted RBCs. As cell permeable precursors to glutathione, we show a benefit of pre-exposure to exogenous glutamine, cysteine, and glycine (QCG) amino acids for RBCs and that this pre-treatment intrinsically prepares RBCs to mitigate oxidative stress.

4.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405813

RESUMO

Chronic pain is a significant public health issue. Current treatments have limited efficacy and significant side effects, warranting research on alternative strategies for pain management. One approach involves using small extracellular vesicles (sEVs) to transport beneficial biomolecular cargo to aid pain resolution. Exosomes are 30-150 nm sEVs that can carry RNAs, proteins, and lipid mediators to recipient cells via circulation. Exosomes can be beneficial or harmful depending on their source and contents. To investigate the short and long-term effects of mouse serum-derived sEVs in pain modulation, sEVs from naïve control or spared nerve injury (SNI) model donor mice were injected intrathecally into naïve recipient mice. Basal mechanical thresholds transiently increased in recipient mice. This effect was mediated by opioid signaling as this outcome was blocked by naltrexone. Mass Spectrometry of sEVs detected endogenous opioid peptide leu-enkephalin. A single prophylactic intrathecal injection of sEVs two weeks prior to induction of the pain model in recipient mice delayed mechanical allodynia in SNI model mice and accelerated recovery from inflammatory pain after complete Freund's adjuvant (CFA) injection. ChipCytometry of spinal cord and dorsal root ganglion (DRG) from sEV treated mice showed that prophylactic sEV treatment reduced the number of natural killer (NK) and NKT cells in spinal cord and increased CD206+ anti-inflammatory macrophages in (DRG) after CFA injection. Further characterization of sEVs showed the presence of immune markers suggesting that sEVs can exert immunomodulatory effects in recipient mice to promote the resolution of inflammatory pain. Collectively, these studies demonstrate multiple mechanisms by which sEVs can attenuate pain.

5.
Elife ; 122024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305778

RESUMO

One primary metabolic manifestation of inflammation is the diversion of cis-aconitate within the tricarboxylic acid (TCA) cycle to synthesize the immunometabolite itaconate. Itaconate is well established to possess immunomodulatory and metabolic effects within myeloid cells and lymphocytes, however, its effects in other organ systems during sepsis remain less clear. Utilizing Acod1 knockout mice that are deficient in synthesizing itaconate, we aimed to understand the metabolic role of itaconate in the liver and systemically during sepsis. We find itaconate aids in lipid metabolism during sepsis. Specifically, Acod1 KO mice develop a heightened level of hepatic steatosis when induced with polymicrobial sepsis. Proteomics analysis reveals enhanced expression of enzymes involved in fatty acid oxidation in following 4-octyl itaconate (4-OI) treatment in vitro. Downstream analysis reveals itaconate stabilizes the expression of the mitochondrial fatty acid uptake enzyme CPT1a, mediated by its hypoubiquitination. Chemoproteomic analysis revealed itaconate interacts with proteins involved in protein ubiquitination as a potential mechanism underlying its stabilizing effect on CPT1a. From a systemic perspective, we find itaconate deficiency triggers a hypothermic response following endotoxin stimulation, potentially mediated by brown adipose tissue (BAT) dysfunction. Finally, by use of metabolic cage studies, we demonstrate Acod1 KO mice rely more heavily on carbohydrates versus fatty acid sources for systemic fuel utilization in response to endotoxin treatment. Our data reveal a novel metabolic role of itaconate in modulating fatty acid oxidation during polymicrobial sepsis.


Assuntos
Inflamação , Sepse , Succinatos , Camundongos , Animais , Inflamação/metabolismo , Endotoxinas , Ácidos Graxos/metabolismo , Lipídeos
6.
J Extracell Vesicles ; 13(1): e12398, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191961

RESUMO

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Feminino , Animais , Camundongos , Proteoma , Líquido Extracelular , Microglia , Proteômica , Hipocampo
7.
Ther Adv Med Oncol ; 16: 17588359231217959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38249330

RESUMO

Background: Immunotherapy with programmed death receptor-1 (PD-1) inhibitors, as a single agent or in combination with chemotherapy, is the standard first-line treatment for recurrent or metastatic head and neck squamous cell cancer (R/M HNSCC). Unfortunately, there is no established second-line treatment for the many patients who fail immunotherapy. Cetuximab is the only targeted therapy approved in HNSCC but historically has a low response rate of 13%. Objectives: We hypothesize that cetuximab monotherapy following an immune checkpoint inhibitor (ICI) will lead to increased efficacy due to a potential synergistic effect on the antitumor immune response, as a result of activation effects of both treatments on innate and adaptative immune responses. To the authors' knowledge, this is the only ongoing prospective clinical study that evaluates the combination of cetuximab and ICIs administered sequentially. Methods and analysis: In this non-randomized, open-label, phase II trial, 30 patients with R/M HNSCC who have previously failed or could not tolerate a PD-1 inhibitor as a single agent or in combination with chemotherapy will subsequently be treated with cetuximab monotherapy. Outcomes of interest include overall response rate, duration of response, progression-free survival, overall survival, and treatment toxicity, as well as treatment outcome measured by a patient-reported outcome questionnaire. Saliva and blood will be collected for correlative studies to investigate the immune response status at the end of therapy with an ICI and the effect of cetuximab on the antitumor immune response. The results will be correlated with the response to cetuximab and the time window between the last administration of an ICI and the loading dose of cetuximab. The clinical study is actively recruiting. Ethics: This study was approved by the Wake Forest Comprehensive Cancer Center Institutional Review Board: IRB00065239. Clinical trial registration: This study is registered on ClinicalTrials.gov: NCT04375384.

8.
Geroscience ; 46(1): 349-365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37368157

RESUMO

Mitochondrial improvements resulting from behavioral interventions, such as diet and exercise, are systemic and apparent across multiple tissues. Here, we test the hypothesis that factors present in serum, and therefore circulating throughout the body, can mediate changes in mitochondrial function in response to intervention. To investigate this, we used stored serum from a clinical trial comparing resistance training (RT) and RT plus caloric restriction (RT + CR) to examine effects of blood borne circulating factors on myoblasts in vitro. We report that exposure to dilute serum is sufficient to mediate bioenergetic benefits of these interventions. Additionally, serum-mediated bioenergetic changes can differentiate between interventions, recapitulate sex differences in bioenergetic responses, and is linked to improvements in physical function and inflammation. Using metabolomics, we identified circulating factors associated with changes in mitochondrial bioenergetics and the effects of interventions. This study provides new evidence that circulating factors play a role in the beneficial effects of interventions that improve healthspan among older adults. Understanding the factors that drive improvements in mitochondrial function is a key step towards predicting intervention outcomes and developing strategies to countermand systemic age-related bioenergetic decline.


Assuntos
Dieta , Mitocôndrias , Humanos , Masculino , Feminino , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Terapia por Exercício
9.
Radiat Res ; 200(6): 548-555, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37902230

RESUMO

Late effects of total- or partial-body irradiation include chronic kidney injury (CKI), which increases morbidity and mortality. Glomerular filtration rate (GFR) is the gold standard measure of kidney function. Renal function markers, such as blood urea nitrogen (BUN) and serum creatinine (Cr), may not be higher than reference ranges until 50% or more of nephrons are affected. Currently available methods to measure GFR are difficult and expensive, requiring multiple blood draws or timed urine collections, but their use can provide a framework for the development of simpler GFR estimates. The measurement of iohexol clearance is a validated tool used to determine GFR in veterinary patients. In this study, we aimed to determine if the Schwartz formula as used in human pediatric medicine can estimate GFR in rhesus macaques. We hypothesized that iohexol-GFR would correlate with the Schwartz formula-estimated GFR (eGFR) in irradiated and non-irradiated rhesus macaques. Twelve rhesus macaques [age 5-14 years (mean 7 years); 5 females, 7 males] with a range of BUN levels were selected for comparison to 4 non-irradiated controls (2 females, 2 males). Irradiated animals were divided by BUN into 3 groups: BUN ≤20 mg/dL (n = 4), BUN >20-24 mg/dL (n = 4), and BUN ≥25 mg/dL (n = 4). Baseline serum chemistry and urinalysis were used to assess renal function. For measurement of GFR, macaques were maintained under general anesthesia and received an intravenous injection of iohexol (2 mL/kg, 300 mg I/mL). Whole blood was collected at 10, 30, 60 and 90 min post-iohexol injection. Plasma iohexol concentrations were determined by mass spectrometry. GFR was calculated from the peak iohexol concentration and trapezoidal area under the curve (tAUC). The iohexol-GFR significantly correlated with the Schwartz formula-eGFR. In macaques with renal irradiation doses below 6 Gy, GFR was higher for males than females. GFR was lower in macaques with renal irradiation doses greater than 6 Gy compared to macaques with renal doses less than 6 Gy. We conclude that use of the Schwartz formula can provide a rapid, non-invasive, cost-effective, and accurate estimation of GFR to aid in the clinical assessment of renal function in irradiated rhesus macaques.


Assuntos
Iohexol , Rim , Humanos , Masculino , Criança , Feminino , Animais , Pré-Escolar , Adolescente , Taxa de Filtração Glomerular , Macaca mulatta , Testes de Função Renal/métodos
10.
iScience ; 26(10): 107817, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37744034

RESUMO

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are dysregulated in many pervasive diseases. Recently, we discovered that ERK1/2 is oxidized by signal-generated hydrogen peroxide in various cell types. Since the putative sites of oxidation lie within or near ERK1/2's ligand-binding surfaces, we investigated how oxidation of ERK2 regulates interactions with the model substrates Sub-D and Sub-F. These studies revealed that ERK2 undergoes sulfenylation at C159 on its D-recruitment site surface and that this modification modulates ERK2 activity differentially between substrates. Integrated biochemical, computational, and mutational analyses suggest a plausible mechanism for peroxide-dependent changes in ERK2-substrate interactions. Interestingly, oxidation decreased ERK2's affinity for some D-site ligands while increasing its affinity for others. Finally, oxidation by signal-generated peroxide enhanced ERK1/2's ability to phosphorylate ribosomal S6 kinase A1 (RSK1) in HeLa cells. Together, these studies lay the foundation for examining crosstalk between redox- and phosphorylation-dependent signaling at the level of kinase-substrate selection.

11.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37292635

RESUMO

Malaria is a highly oxidative parasitic disease in which anemia is the most common clinical symptom. A major contributor to malarial anemia pathogenesis is the destruction of bystander, uninfected red blood cells. Metabolic fluctuations are known to occur in the plasma of individuals with acute malaria, emphasizing the role of metabolic changes in disease progression and severity. Here, we report that conditioned media from Plasmodium falciparum culture induces oxidative stress in healthy uninfected RBCs. Additionally, we show the benefit of amino acid pre-exposure for RBCs and how this pre-treatment intrinsically prepares RBCs to mitigate oxidative stress. Key points: Intracellular ROS is acquired in red blood cells incubated with Plasmodium falciparum conditioned media Glutamine, cysteine, and glycine amino acid supplementation increased glutathione biosynthesis and reduced ROS levels in stressed RBCs.

12.
J Lipid Res ; 64(8): 100405, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352974

RESUMO

Alpha/beta hydrolase domain-containing protein 4 (ABHD4) catalyzes the deacylation of N-acyl phosphatidyl-ethanolamine (NAPE) and lyso-NAPE to produce glycerophospho-N-acyl ethanolamine (GP-NAE). Through a variety of metabolic enzymes, NAPE, lyso-NAPE, and GP-NAE are ultimately converted into NAE, a group of bioactive lipids that control many physiological processes including inflammation, cognition, food intake, and lipolysis (i.e., oleoylethanolamide or OEA). In a diet-induced obese mouse model, adipose tissue Abhd4 gene expression positively correlated with adiposity. However, it is unknown whether Abhd4 is a causal or a reactive gene to obesity. To fill this knowledge gap, we generated an Abhd4 knockout (KO) 3T3-L1 pre-adipocyte. During adipogenic stimulation, Abhd4 KO pre-adipocytes had increased adipogenesis and lipid accumulation, suggesting Abhd4 is responding to (a reactive gene), not contributing to (not a causal gene), adiposity, and may serve as a mechanism for protecting against obesity. However, we did not observe any differences in adiposity and metabolic outcomes between whole-body Abhd4 KO or adipocyte-specific Abhd4 KO mice and their littermate control mice (both male and female) on chow or a high-fat diet. This might be because we found that deletion of Abhd4 did not affect NAE such as OEA production, even though Abhd4 was highly expressed in adipose tissue and correlated with fasting adipose OEA levels and lipolysis. These data suggest that ABHD4 regulates adipocyte differentiation in vitro but does not affect adipose tissue lipid metabolism in mice despite nutrient overload, possibly due to compensation from other NAPE and NAE metabolic enzymes.


Assuntos
Tecido Adiposo , Metabolismo dos Lipídeos , Animais , Feminino , Masculino , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Etanolaminas/metabolismo , Lipólise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
13.
Future Oncol ; 19(22): 1523-1534, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37199326

RESUMO

Effective treatments for advanced/recurrent head and neck squamous-cell carcinoma are limited. For cases not curable by conventional local therapies, the immune checkpoint inhibitor pembrolizumab shows modest response rates. Quad-shot, a hypofractionated palliative radiotherapy regimen (14.8 Gy in four twice-daily fractions), can provide symptomatic relief, contributes to local control and may potentiate the effects of immune checkpoint inhibitors. In this study, 15 patients with advanced/recurrent head and neck squamous-cell carcinoma will be treated with pembrolizumab combined with up to three administrations of quad-shot before cycles four, eight and 13. Outcomes include disease response, survival and treatment toxicity. Correlative multiomics analysis of blood and saliva will identify molecular biomarkers of response to immune checkpoint inhibitor and the immune-related impact of quad-shot. Clinical trial registration: This study (WFBCCC 60320) is registered on NCT04454489 (ClinicalTrials.gov).


Advanced and recurrent head and neck cancers are difficult to treat. Most patients receive systemic therapies, such as chemotherapy or immunotherapy, with modest rates of cancer control. We aim to test the effectiveness of an immunotherapy drug called pembrolizumab in combination with a type of low-dose radiation therapy called quad-shot. Patients will receive pembrolizumab every 3 weeks and will be treated with one to three low-dose radiation therapy courses targeted at their cancer in the head and neck approximately every 12 weeks. We plan to measure how well the cancer responds to treatment, how long this response lasts, how long patients survive and treatment side effects.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias de Cabeça e Pescoço , Inibidores de Checkpoint Imunológico , Imunoterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/terapia , Recidiva Local de Neoplasia , Carcinoma de Células Escamosas de Cabeça e Pescoço/epidemiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Ensaios Clínicos como Assunto
14.
ACS Nano ; 17(11): 10252-10268, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37224410

RESUMO

Obesity is a major risk factor for multiple chronic diseases. Anthropometric and imaging approaches are primarily used to assess adiposity, and there is a dearth of techniques to determine the changes in adipose tissue (AT) at the molecular level. Extracellular vesicles (EVs) have emerged as a novel and less invasive source of biomarkers for various pathologies. Furthermore, the possibility of enriching cell or tissue-specific EVs from the biofluids based on their unique surface markers has led to classifying these vesicles as "liquid biopsies", offering valuable molecular information on hard-to-access tissues. Here, we isolated small EVs from AT (sEVAT) of lean and diet-induced obese (DIO) mice, identified unique surface proteins on sEVAT by surface shaving followed by mass spectrometry, and developed a signature of five unique proteins. Using this signature, we pulled out sEVAT from the blood of mice and validated the specificity of isolated sEVAT by measuring the expression of adiponectin, 38 adipokines on an array, and several adipose tissue-related miRNAs. Furthermore, we provided evidence of sEV applicability in disease prediction by characterizing sEVAT from the blood of lean and DIO mice. Interestingly, sEVAT-DIO cargo showed a stronger pro-inflammatory effect on THP1 monocytes compared to sEVAT-Lean and a significant increase in obesity-associated miRNA expression. Equally important, sEVAT cargo revealed an obesity-associated aberrant amino acid metabolism that was subsequently validated in the corresponding AT. Lastly, we show a significant increase in inflammation-related molecules in sEVAT isolated from the blood of nondiabetic obese (>30 kg/m2) individuals. Overall, the present study offers a less-invasive approach to characterize AT.


Assuntos
Tecido Adiposo , Vesículas Extracelulares , Tecido Adiposo/química , Biópsia Líquida , Vesículas Extracelulares/química , Obesidade , Humanos , Animais , Camundongos , Biomarcadores
15.
Nat Commun ; 14(1): 2123, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37055412

RESUMO

Redox signaling and cardiac function are tightly linked. However, it is largely unknown which protein targets are affected by hydrogen peroxide (H2O2) in cardiomyocytes that underly impaired inotropic effects during oxidative stress. Here, we combine a chemogenetic mouse model (HyPer-DAO mice) and a redox-proteomics approach to identify redox sensitive proteins. Using the HyPer-DAO mice, we demonstrate that increased endogenous production of H2O2 in cardiomyocytes leads to a reversible impairment of cardiac contractility in vivo. Notably, we identify the γ-subunit of the TCA cycle enzyme isocitrate dehydrogenase (IDH)3 as a redox switch, linking its modification to altered mitochondrial metabolism. Using microsecond molecular dynamics simulations and experiments using cysteine-gene-edited cells reveal that IDH3γ Cys148 and 284 are critically involved in the H2O2-dependent regulation of IDH3 activity. Our findings provide an unexpected mechanism by which mitochondrial metabolism can be modulated through redox signaling processes.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Camundongos , Animais , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Metabolismo Energético , Miócitos Cardíacos/metabolismo , Estresse Oxidativo
16.
Antioxidants (Basel) ; 12(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36978989

RESUMO

Head and neck squamous cell carcinoma (HNSCC) cells are highly heterogeneous in their metabolism and typically experience elevated reactive oxygen species (ROS) levels such as superoxide and hydrogen peroxide (H2O2) in the tumor microenvironment. Tumor cells survive under these chronic oxidative conditions by upregulating antioxidant systems. To investigate the heterogeneity of cellular responses to chemotherapeutic H2O2 generation in tumor and healthy tissue, we leveraged single-cell RNA-sequencing (scRNA-seq) data to perform redox systems-level simulations of quinone-cycling ß-lapachone treatment as a source of NQO1-dependent rapid superoxide and hydrogen peroxide (H2O2) production. Transcriptomic data from 10 HNSCC patient tumors was used to populate over 4000 single-cell antioxidant enzymatic network models of drug metabolism. The simulations reflected significant systems-level differences between the redox states of healthy and cancer cells, demonstrating in some patient samples a targetable cancer cell population or in others statistically indistinguishable effects between non-malignant and malignant cells. Subsequent multivariate analyses between healthy and malignant cellular models pointed to distinct contributors of redox responses between these phenotypes. This model framework provides a mechanistic basis for explaining mixed outcomes of NAD(P)H:quinone oxidoreductase 1 (NQO1)-bioactivatable therapeutics despite the tumor specificity of these drugs as defined by NQO1/catalase expression and highlights the role of alternate antioxidant components in dictating drug-induced oxidative stress.

17.
Gut ; 72(10): 1848-1865, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36948576

RESUMO

OBJECTIVE: Ample evidence exists for the role of abnormal gut microbiota composition and increased gut permeability ('leaky gut') in chronic inflammation that commonly co-occurs in the gut in both obesity and diabetes, yet the detailed mechanisms involved in this process have remained elusive. DESIGN: In this study, we substantiate the causal role of the gut microbiota by use of faecal conditioned media along with faecal microbiota transplantation. Using untargeted and comprehensive approaches, we discovered the mechanism by which the obese microbiota instigates gut permeability, inflammation and abnormalities in glucose metabolism. RESULTS: We demonstrated that the reduced capacity of the microbiota from both obese mice and humans to metabolise ethanolamine results in ethanolamine accumulation in the gut, accounting for induction of intestinal permeability. Elevated ethanolamine increased the expression of microRNA-miR-101a-3p by enhancing ARID3a binding on the miR promoter. Increased miR-101a-3p decreased the stability of zona occludens-1 (Zo1) mRNA, which in turn, weakened intestinal barriers and induced gut permeability, inflammation and abnormalities in glucose metabolism. Importantly, restoring ethanolamine-metabolising activity in gut microbiota using a novel probiotic therapy reduced elevated gut permeability, inflammation and abnormalities in glucose metabolism by correcting the ARID3a/miR-101a/Zo1 axis. CONCLUSION: Overall, we discovered that the reduced capacity of obese microbiota to metabolise ethanolamine instigates gut permeability, inflammation and glucose metabolic dysfunctions, and restoring ethanolamine-metabolising capacity by a novel probiotic therapy reverses these abnormalities. TRIAL REGISTRATION NUMBER: NCT02869659 and NCT03269032.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , MicroRNAs , Camundongos , Animais , Humanos , Camundongos Obesos , Inflamação/etiologia , Obesidade/complicações , Glucose , Permeabilidade , Etanolaminas
18.
bioRxiv ; 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36945515

RESUMO

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. Circulating EVs are protected from degradation, making them attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labeling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g. APPswe,PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with A deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.

19.
Neurooncol Adv ; 5(1): vdac186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789023

RESUMO

Background: Leptomeningeal failure (LMF) represents a devastating progression of disease following resection of brain metastases (BrM). We sought to identify a biomarker at time of BrM resection that predicts for LMF using mass spectrometry-based proteomic analysis of resected BrM and to translate this finding with histochemical assays. Methods: We retrospectively reviewed 39 patients with proteomic data available from resected BrM. We performed an unsupervised analysis with false discovery rate adjustment (FDR) to compare proteomic signature of BrM from patients that developed LMF versus those that did not. Based on proteomic analysis, we applied trichrome stain to a total of 55 patients who specifically underwent resection and adjuvant radiosurgery. We used competing risks regression to assess predictors of LMF. Results: Of 39 patients with proteomic data, FDR revealed type I collagen-alpha-1 (COL1A1, P = .045) was associated with LMF. The degree of trichrome stain in each block correlated with COL1A1 expression (ß = 1.849, P = .001). In a cohort of 55 patients, a higher degree of trichrome staining was associated with an increased hazard of LMF in resected BrM (Hazard Ratio 1.58, 95% CI 1.11-2.26, P = .01). Conclusion: The degree of trichrome staining correlated with COL1A1 and portended a higher risk of LMF in patients with resected brain metastases treated with adjuvant radiosurgery. Collagen deposition and degree of fibrosis may be able to serve as a biomarker for LMF.

20.
Cell Rep ; 42(1): 111941, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640341

RESUMO

Activating the macrophage NLRP3 inflammasome can promote excessive inflammation with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and interleukin-1ß (IL-1ß) secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves crista ultrastructure, and attenuates mitochondrial reactive oxygen species (ROS) production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. Our study suggests a non-canonical role of mitochondrial PDHK in promoting mitochondrial stress and supporting NLRP3 inflammasome activation during acute inflammation.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...